A step towards holistic discretisation of stochastic partial differential equations
نویسنده
چکیده
The long term aim is to use modern dynamical systems theory to derive discretisations of noisy, dissipative partial differential equations. As a first step we here consider a small domain and apply stochastic centre manifold techniques to derive a model. The approach automatically parametrises subgrid scale processes induced by spatially distributed stochastic noise. It is important to discretise stochastic partial differential equations carefully, as we do here, because of the sometimes subtle effects of noise processes. In particular we see how stochastic resonance effectively extracts new noise processes for the model which in this example helps stabilise the zero solution.
منابع مشابه
APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملModel subgrid microscale interactions to holistically discretise stochastic partial differential equations
Constructing discrete models of stochastic partial differential equations is very delicate. Here we use stochastic centre manifold theory to derive and support spatial discretisations of the nonlinear advectiondiffusion dynamics of the stochastically forced Burgers’ equation. The trick to the application of the theory is to divide the physical domain into finite sized elements by introducing in...
متن کاملModel subgrid microscale interactions to accurately discretise stochastic partial differential equations
Constructing discrete models of stochastic partial differential equations is very delicate. Here we describe how stochastic centre manifold theory provides novel support for spatial discretisations of the nonlinear advection-diffusion dynamics of the stochastically forced Burgers’ equation. Dividing the physical domain into finite sized elements empowers the approach to resolve fully coupled dy...
متن کاملStability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملStochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered. The coefficients are assumed to have linear growth. We do not impose coercivity conditions on coefficients. A novel method of proof for establishing existence and uniqueness of the mild solution is proposed. Examples on stochastic partial differentia...
متن کامل